Formylation of primary hydroxyl groups in sugars

Li-Xian Gan and Roy L. Whistler*

Whistler Center of Carbohydrate Research and Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907 (U.S.A.)

(Received September 6th, 1989; accepted for publication, January 5th, 1990)

ABSTRACT

Application of 99% formic acid at 25° formylates primary hydroxyl groups as shown by the easy formation of 6-O-formyl-D-glucopyranose and 6-O-formyl-D-fructofuranose, isolated as their tetra-acetates in yields of 77% and 31%, respectively. Likewise, D-glucitol gave the 2,3,4,5-tetra-O-acetyl-1,6-di-O-formyl derivative (84%) and methyl a-D-glucopyranoside gave the 6-formate (74%) characterized as the crystalline triacetate. On storage of the triacetate in methanol at 25°, the formyl group was lost and the 2,3,6-triacetate was formed, whereas the corresponding tribenzoate was deformylated in acidic methanol without migration of the benzoyl groups.

INTRODUCTION

Formic acid (98–99%) had been used to esterify cholic acid¹ and starch²⁻⁴ where it gives an approximate monoformate with nearly all the ester groups at position 6.

Having a need to protect primary alcohol groups in sugars at moderate temperatures, the use of 99% formic acid at 25° to block the primary hydroxyl groups of D-glucitol (1), D-glucose (4), D-fructose (8), methyl a-D-glucopyranoside (12), and sucrose have been examined. Thus, 12 gave 74% of the 6-formate, 1 and 4 gave mixtures from which the primary formates (2 and 5) could be isolated as the acetylated derivatives 3 (84%) and 6 (77%), and 8 gave 30% of 1,2,3,4-tetra-O-acetyl-6-O-formyl-D-fructo-furanose derivative (10). The times of reaction varied from 2 to 4 h to reach maximum yield and <10% unformylated sugar was then present (t.l.c.). The starting materials dissolved slowly and ~1 h was required for complete dissolution. Only methyl 6-O-formyl-a-D-glucopyranoside triacetate (14) and tribenzoate (16) were crystalline.

Sucrose formates were not obtained. Sucrose dissolved slowly during the formy-lation reaction and complete dissolution occurred after 1-5 h. T.l.c. then revealed D-glucose and D-fructose and their 6-formates. The ratio of formate to free sugar was $\sim 2:3$. Thus, in the short reaction period used, extensive cleavage of the sucrose occurred, possibly either by hydrolysis or by displacement with formate ion to produce a labile glycosyl formate.

The formyl groups in formylated nucleosides can be removed⁵ by treatment with

^{*} Author for correspondence.

1 R =
$$R^1$$
 = H
2 R = H, R^1 = HCO
3 R = Ac, R^1 = HCO

$$R'OCH_2$$
 RO
 CH_2OF
 RO
 RO
 RO

9 R =
$$H,R^1 = HCO$$

10 R = $Ac,R^1 = HCO$
11 R = $R^1 = Ac$

$$4R = R^{1} = R^{2} = H$$
 $5R = R^{1} = H, R^{2} = HCO$
 $6R = R^{1} = Ac, R^{2} = HCO$
 $7R = R^{1} = R^{2} = Ac$

ÇH₂OR²

boiling methanol without loss of acetyl groups. On methanolysis of 14 at 25°, deformylation was essentially complete in 3 days but acetyl migration occurred to give the 2,3,6-triacetate 15. The low stability of 14 is suggested further by the observation that 13, on storage for a year, contained crystals of methyl α -D-glucopyranoside (12). On the other hand, 2,3,4-tribenzoate 16 was resistant to methanolysis even at reflux temperature for 24 h, thereby illustrating the variable stability of formates as observed also in nucleoside derivatives⁵. When a small amount of methanolic hydrogen chloride was added to the solution of 16 in methanol, formate removal occurred within 24 h at 25° producing methyl 2,3,4-tri-O-benzoyl- α -D-glucopyranoside (17).

EXPERIMENTAL.

General methods. — Melting points were determined with a Fisher–Johns apparatus and are uncorrected. Optical rotations were measured with a Perkin–Elmer 241 Polarimeter. Column chromatography employed Merck silica gel (230–400 mesh) at 25°. T.l.c. was performed at 25° on Silica Gel 60 or 60 F₂₅₄ (Merck) with detection by charring with sulfuric acid or by short-wavelength u.v. light. The ¹H- and ¹³C-n.m.r. spectra (internal Me₄Si) were recorded with a Nicolet NT 200 spectrometer, and the

¹³C-n.m.r. data are given in Table I. P.c. was performed on Whatman No. 1 paper with n-BuOH-EtOH-H₂O (4:1:5, upper layer) at 25°, with detection⁸ by p-anisidine phosphate in ethanol.

2,3,4,5-Tetra-O-acetyl-1,6-di-O-formyl-D-glucitol (3). – A mixture of 1 (1.82 g, 10 mmol) and formic acid (5 mL) was stirred at 25° for 2 h, then concentrated at 25° under reduced pressure. To the syrupy residue was added pyridine (10.0 mL) and acetic anhydride (5.0 mL), and the mixture was shaken to effect dissolution, stirred at 25° for 4 h, poured into ice and water, and extracted with ether. The extract was washed successively with water, aqueous 5% cupric sulfate, and water, dried (MgSO₄), and concentrated under reduced pressure. Column chromatography [ethyl acetate-light petroleum (3:17) then benzene-acetone (9:1)] gave 3 (3.43 g, 84%), isolated as a colorless syrup, $[\alpha]_D^{25} + 17^\circ$ (c 1.2, chloroform). H-N.m.r. data (CDCl₃): δ 8.06 (s, 2 H, 2 HCOO), 5.45 (m, 2 H, H-3,4), 5.25 (m, 1 H, H-2), 5.10 (m, 1 H, H-5), 4.44 (m, 2 H, H-1,1'), 4.21 (m, 2 H, H-6,6'), 2.17 (s, 3 H, Ac), 2.08 (s, 9 H, 3 Ac).

Anal. Calc. for C₁₆H₂₂O₁₂·0.5H₂O: C, 46.26; H, 5.54. Found: C, 46.54; H, 5.80.

1,2,3,4-Tetra-O-acetyl-6-O-formyl-D-glucopyranose (6). — A mixture of 4 (2.70 g, 15 mmol) and 99% formic acid (7 mL) was stirred at 25° for 3 h, then concentrated at 25° under reduced pressure. The syrupy residue was acetylated as described above. Column chromatography (chloroform-acetone-light petroleum, 4:1:10) of the product gave αβ-6 as a hygroscopic glass (4.35 g, 77%), $[\alpha]_D^{25} + 57^\circ$ (c 2.1, chloroform). ¹H-N.m.r. data (CDCl₃): δ 8.06 (s, 1 H, HCOO), 6.33 (d, ~5.45 H, $J_{1,2}$ 3.3 Hz, H-1α), 5.73 (d, ~0.55 Hz, $J_{1,2}$ 8.0 Hz, H-1β), 5.06–5.60 (m, 3 H, H-2,3,4), 3.87–4.28 (m, 3 H, H-5,6,6'), 2.02–2.19 (m, 12 H, 4 Ac).

Anal. Calc. for C₁₅H₂₀O₁₁: C, 47.87; H, 5.32. Found: C, 47.66; H, 5.71.

TABLE I

13C-N.m.r. chemical shifts $(\delta, p.p.m.)^a$

Compound	C-I	C-2	C-3	C-4	C-5	C-6	CH ₃ O	НСОО
3	60.05	69.0	68.0	68.7	68.2	60.3		160.0
								159.2
6 (αβ)	88.5	69.2	69.3	67.6	68.7	60.6		160.1
	91.2	69.8	72.2	67.5	71.9	60.6		160.1
$7 (\alpha)^6$	89	69	69	68	69	61		
7 (β) ⁶	91	70	72	67	72	61		
10 (αβ)	62.1	108.6	79.5	81.6	77.0	62.1		160.7
	63.0	105.8	79.5	81.4	76.9	63.6		160.7
11 $(\alpha)^7$	61.8	107.9	78.4	80.6	76.1	62.8		
11 $(\beta)^7$	63.7	104.9	75.7	79.5	75.6	63.9		
13 ^b	100.8	73.2	74.9	70.4	71.3	63.9	55.3	162.2
14	96.7	70.7	70.0	68.6	66.9	61.5	55.7	160.4
15	96.9	70.6	72.8	69.2	69.7	62.9	55.3	
16	97.0	69.2	70.0	67.4	71.9	61.8	55.7	160.4

[&]quot;All chemical shifts are relative to internal Me₄Si taken as 0 p.p.m. When a secondary reference standard was used, the shifts are converted to the Me₄Si scale; for CDCl₃ taken as 77.0 p.p.m. Shifts for acetyl and benzoyl groups are not listed. b Using acetone- d_b as solvent, all others using CDCl₃.

1,2,3,4-Tetra-O-acetyl-6-O-formyl-D-fructose (10). — A mixture of 8 (1.80 g, 1.0 mmol) and 99% formic acid (5.0 mL) was stirred at 25° for 4 h, then concentrated at 25° under reduced pressure. To the syrupy residue (9) was added pyridine (10.0 mL), 4-dimethylaminopyridine (100 mg), and acetic anhydride (5.0 mL), and the mixture was shaken until clear. After storage for 12 h at 25°, the mixture was poured into ice and water, and worked-up as described in the preparation of 6 to give $\alpha\beta$ -10 (1.15 g, 31%), isolated as a syrup, $[\alpha]_D^{25} + 45^\circ$ (c 1.1, chloroform). ¹H-N.m.r. data (CDCl₃): δ 8.08 (s, 1 H, HCOO), 5.88 (m, 0.8 Hz, H-3 α), 5.61 (m, 0.4 H, H-3,4 β), 5.17 (m, 0.5 H, H-4 α), 4.12–4.70 (m, 5 H, H-1,1',5,6,6'), 2.11–2.17 (4 s, each 3 H, 4 Ac).

Anal. Calc. for C₁₅H₂₀O₁₁: C, 47.87; H, 5.32. Found: C, 48.14; H, 5.66.

Methyl 6-O-formyl-α-D-glucopyranoside (13). — A mixture of 12 (1.94 g, 10 mmol) and 99% formic acid (5 mL) was stirred for 3 h at 25°, then concentrated at 25° under reduced pressure. Column chromatography (chloroform-acetone, 2:1) of the syrupy residue gave 13 (1.65 g, 74%), isolated as a colorless glass, $[\alpha]_{\rm D}^{1.5} + 146^{\circ}$ (c 1.1, methanol and ethanol). H-N.m.r. data $[(CD_3)_2CO]: \delta 8.19$ (s, 1 H, HCOO), 4.67 (d, 1 H, $J_{1,2}$ 3.0 Hz, H-1), 4.48 (ddd, 1 H, $J_{6,6}$ 11.7 Hz, H-6), 4.45 (ddd, 1 H, $J_{5,6}$ 2.2 Hz, H-6'), 4.28 (dd, 1 H, $J_{5,6}$ 6.1 Hz, H-5), 3.74 (t, 1 H, $J_{3,4}$ 9.5 Hz, H-3), 3.65 (t, 1 H, $J_{4,5}$ 9.5 Hz, H-4), 3.40 (dd, 1 H, $J_{2,3}$ 9.5 Hz, H-2), 3.37 (s, 3 H, OMe). See Table I for the ¹³C-n.m.r. data.

Anal. Calc. for C₃H₁₄O₇: C, 43.24; H, 6.36. Found: C, 43.50; H, 6.79.

Methyl 2,3,4-tri-O-acetyl-6-O-formyl-α-D-glucopyranoside (14). — A solution of 13 (660 mg, 2.97 mmol) and acetic anhydride (1 mL) in pyridine (2 mL) was stirred for 5 h at 25°, then worked-up as described above. Column chromatography (chloroform–acetone–light petroleum, 4:1:5) of the product (0.8 g) gave 14 (770 mg, 75%), m.p. 85–86° (from EtOH), $[\alpha]_{D}^{25} + 136^{\circ}$ (c 1.4, chloroform). ¹H-N.m.r. data (CDCl₃): δ 8.08 (s, 1 H, HCOO), 5.49 (dd, 1 H, $J_{3,4}$ 9.6 Hz, H-3), 5.06 (dd, 1 H, $J_{4,5}$ 9.8 Hz, H-4), 4.96 (d, 1 H, $J_{1,2}$ 3.0 Hz, H-1), 4.90 (dd, 1 H, $J_{2,3}$ 10.0 Hz, H-2), 4.23 (m, 2 H, H-6,6'), 4.04 (dd, 1 H, $J_{5,6}$ 6.1, $J_{5,6'}$ 2.2 Hz, H-5), 3.42 (s, 3 H, OMe), 2.08, 2.04, 2.01 (3 s, each 3 H, 3 Ac).

Anal. Calc. for $C_{1d}H_{20}O_{10}$: C, 48.28; H, 5.79. Found: C, 48.37; H, 6.08.

Methyl 2,3,6-tri-O-acetyl-α-D-glucopyranoside (15). — A solution of 14 (30 mg, 0.086 mmol) in methanol (2 mL) was stirred for 3 days at 25°, then concentrated under reduced pressure. Column chromatography (toluene–ethyl acetate, 3:2) of the residue gave 15 (16.6 mg, 60%), isolated as a colorless syrup, $[\alpha]_{\rm p}^{25}$ + 96° (c 0.95, chloroform); lit. $[\alpha]_{\rm p}^{20}$ + 101° (chloroform). 1 H-N.m.r. data (CDCl₃): δ 5.31 (dd, 1 H, $J_{3,4}$ 10.0 Hz, H-3), 4.91 (d, 1 H, $J_{1,2}$ 3.5 Hz, H-1), 4.85 (dd, 1 H, $J_{2,3}$ 10 Hz, H-2), 4.44 (dd, 1 H, $J_{6,6'}$ 12.0 Hz, H-6), 4.33 (dd, 1 H, $J_{5,6'}$ 2.1 Hz, H-6'), 3.84 (ddd, 1 H, $J_{5,6'}$ 4.5 Hz, H-5), 3.58 (dd, 1 H, $J_{4,5}$ 10.0 Hz, H-4), 3.41 (s, 3 H, OMe), 2.09, 2.10, 2.13 (3 s, each 3 H, 3 Ac).

Methyl 2,3,4-tri-O-benzoyl-6-O-formyl- α -D-glucopyranoside (16). — To a solution of 13 (1.65 g, 7.43 mmol) in pyridine (10 mL) was added benzoyl chloride (3.14 g, 22.3 mmol) dropwise with cooling (ice-water). After stirring for 5 h at 25°, the mixture was poured into ice-water and extracted with ether-ethyl acetate (1:1), and the extract was washed successively with water, aqueous 50% cupric sulfate, and water, dried (Na₂SO₄), and concentrated under reduced pressure. Column chromatography (chloroform-acetone-light petroleum, 4:1:5) of the product (3.84 g) gave 16 (2.78 g, 70%),

isolated as a colorless glass, $[\alpha]_{D}^{25} + 59^{\circ}$ (c 4.1, chloroform). ¹H-N.m.r. data (CDCl₃): δ 8.11 (s, 1 H, HCOO), 7.84–8.04 and 7.23–7.54 (2 m, 15 H, 3 Ph), (t, 1 H, $J_{3,4}$ 9.5 Hz, H-3), 5.60 (t, 1 H, $J_{4,3}$ 9.5 Hz, H-4), 5.25–5.31 (m, 2 H, H-1,2), 4.29–4.39 (m, 3 H, H-5,6,6'), 3.48 (s, 3 H, OMe).

Anal. Calc. for $C_{29}H_{26}O_{10}\cdot H_2O$: C, 63.04; H, 5.07. Found: C, 63.06; H, 4.83.

Methyl 2,3,4-tri-O-benzoyl-α-D-glucopyranoside (17). — To a solution of 16 (534 mg, 1 mmol) in methanol (50 mL) was added one drop of methanolic 2.7M hydrogen chloride, and the mixture was stirred for 24 h at 25°, then concentrated at 25° under reduced pressure. Column chromatography (chloroform-acetone-light petroleum, 4:1:10) of the residue gave 17 (350 mg, 69%), isolated as a colorless glass, $[\alpha]_{\rm D}^{25}$ +53.5° (c 1.5, chloroform); lit. $[\alpha]_{\rm D}^{20}$ +49° (chloroform). 1 H-N.m.r. data (CDCl₃): δ 7.86–8.06 and 7.26–8.62 (2 m, 15 H, 3 Ph), 6.24 (t, 1 H, $J_{3,4}$ 9.6 Hz, H-3), 5.51 (t, 1 H, $J_{4,5}$ 9.6 Hz, H-4), 5.24–5.33 (m, 2 H, H-1,2), 4.24 (m, 1 H, H-5), 3.77–3.89 (m, 2 H, H-6,6'), 3.48 (s, 3 H, OMe), 2.70 (bs, 1 H, OH). The chemical shifts of H-6 and H-6' were in agreement with those reported 10 .

Anal. Calc. for C₂₈H₂₆O₉: C, 66.40; H, 5.14. Found: C, 66.51; H, 5.50.

Reaction of sucrose with formic acid. — Finely powdered sucrose (3.42 g, 10.0 mmol) was reacted with 99% formic acid (5 mL) at 25° for 90 min and the solution was then concentrated at 25°. Column chromatography (chloroform—ethanol, 7:3; then chloroform—ethanol—water, 12:8:1) gave mixtures A and B. Mixture A was not resolved in t.l.c. but, after acetylation, the n.m.r. spectra showed the presence of both 6 and 10. P.c. of mixture B gave D-glucose (4) and D-fructose (8). The ratio of mixtures A and B was $\sim 2:3$, indicative of incomplete esterification due to the short reaction time.

ACKNOWLEDGMENTS

Support for the n.m.r. spectroscopy was provided by grants from the NIH (RR01077) and NSF (BBS-8714258), and Dr. David G. Barkalow is thanked for running the n.m.r. analyses.

REFERENCES

- 1 F. Cortese and L. Bauman, J. Am. Chem. Soc., 57 (1935) 1393-1395.
- 2 H. Tarkow and A. J. Stamm, J. Phys. Chem., 56 (1952) 266-271.
- 3 I. A. Wolff, D. W. Olds, and G. E. Hilbert, J. Am. Chem. Soc., 79 (1957) 3860-3862.
- 4 D. Gottlieb, C. G. Caldwell, and R. M. Hixon, J. Am. Chem. Soc., 62 (1940) 3342-3346.
- 5 J. Zemlicha, J. Beranek, and J. Smrt, Collect. Czech. Chem. Commun., 27 (1962) 2784-2795.
- 6 M. R. Vignon and Ph. J. A. Vottero, Tetrahedron Lett., (1976) 2445-2448.
- 7 B. Erbing and B. Lindberg, Acta Chem. Schand., Ser. B., 30 (1976) 12-14.
- 8 S. Mukherjee and H. C. Srivastava, Nature (London), 169 (1952) 330.
- 9 R. Albert, K. Dax, A. E. Stütz, and H. Weidman, J. Carbohydr. Chem., 2 (1983) 279-292.
- 10 N. E. Byramova, M. V. Ovchinnikov, L. V. Backinowsky, and N. K. Kochetkov, Carbohydr. Res., 124 (1983) c8-c11.